相关系数公式(协方差cov与相关系数)

相关系数的计算公式是什么

相关系数公式是ρXY=Cov(X,Y)/√[D(X)]√[D(Y)]。公式中Cov(X,Y)为X,Y的协方差,D(X)、D(Y)分别为X、Y的方差。

公式。

若Y=a+bX,则有:

令E(X)=μ,D(X)=σ。

则E(Y)= bμ+a,D(Y)= bσ。

E(XY)= E(aX+ bX)= aμ+b(σ+μ)。

Cov(X,Y)= E(XY)−E(X)E(Y)= bσ。

相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量。

相关系数按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度,着重研究线性的单相关系数。当相关系数较大时,通常说X和Y相关程度较好;当相关系数较小时,通常说X和Y相关程度较差。

需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1。

当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。

皮尔逊相关系数公式

皮尔逊相关系数公式:若Y=a+bX,则有:令E(X)=μ,D(X)=σ,则E(Y)= bμ+ a,D(Y)= bσ,E(XY)= E(aX+ bX)= aμ+ b(σ+μ),Cov(X,Y)= E(XY)− E(X)E(Y))= bσ。

相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母r表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。

总体和样本皮尔逊系数的绝对值小于或等于1。如果样本数据点精确地落在直线上(计算样本皮尔逊系数的情况),或者双变量分布完全在直线上(计算总体皮尔逊系数的情况),则相关系数等于1或-1。皮尔逊系数是对称的。

皮尔逊相关系数有一个重要的数学特性是,因两个变量的位置和尺度的变化并不会引起该系数的改变,即它该变化的不变量(由符号确定)。也就是说,其中a、b、c和d是常数,并不会改变两个变量的相关系数(该结论在总体和样本皮尔逊相关系数中都成立)。

相关系数计算公式是什么

相关系数r的计算公式是ρXY=Cov(X,Y)/√[D(X)]√[D(Y)]。

公式描述:公式中Cov(X,Y)为X,Y的协方差,D(X)、D(Y)分别为X、Y的方差。

公式。

若Y=a+bX,则有:

令E(X)=μ,D(X)=σ。

则E(Y)= bμ+a,D(Y)= bσ。

E(XY)= E(aX+ bX)= aμ+b(σ+μ)。

Cov(X,Y)= E(XY)−E(X)E(Y)= bσ。

缺点

需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1。

当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。

相关系数r的计算公式是什么

相关系数介于区间[-1,1]。当相关系数为-1,表示完全负相关,表明两项资产的收益率变化方向和变化幅度容完全相反。当相关系数为+1时,表示完全正相关,表明两项资产的收益率变化方向和变化幅度完全相同。当相关系数为0时,表示不相关。

r值的绝对值介于0~1之间。通常来说,r越接近1,表示x与y两个量之间的相关程度就越强,反之,r越接近于0,x与y两个量之间的相关程度就越弱。

扩展资料:

相关关系:当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。变量间的这种相互关系,称为具有不确定性的相关关系。

⑴完全相关:两个变量之间的关系,一个变量的数量变化由另一个变量的数量变化所惟一确定,即函数关系。

⑵不完全相关:两个变量之间的关系介于不相关和完全相关之间。

⑶不相关:如果两个变量彼此的数量变化互相独立,没有关系。

参考资料来源:百度百科-相关关系