克鲁斯卡尔算法总结(克鲁斯卡尔树定理)

一、克鲁斯卡尔算法的算法描述

1、克鲁斯卡尔算法的时间复杂度为O(eloge)(e为网中边的数目),因此它相对于普里姆算法而言,适合于求边稀疏的网的最小生成树。

2、克鲁斯卡尔算法从另一途径求网的最小生成树。假设连通网N=(V,{E}),则令最小生成树的初始状态为只有n个顶点而无边的非连通图T=(V,{∮}),图中每个顶点自成一个连通分量。在E中选择代价最小的边,若该边依附的顶点落在T中不同的连通分量上,则将此边加入到T中,否则舍去此边而选择下一条代价最小的边。依次类推,直至T中所有顶点都在同一连通分量上为止。

3、例如图为依照克鲁斯卡尔算法构造一棵最小生成树的过程。代价分别为1,2,3,4的四条边由于满足上述条件,则先后被加入到T中,代价为5的两条边(1,4)和(3,4)被舍去。因为它们依附的两顶点在同一连通分量上,它们若加入T中,则会使T中产生回路,而下一条代价(=5)最小的边(2,3)联结两个连通分量,则可加入T。因此,构造成一棵最小生成树。

4、上述算法至多对 e条边各扫描一次,假若以“堆”来存放网中的边,则每次选择最小代价的边仅需O(loge)的时间(第一次需O(e))。又生成树T的每个连通分量可看成是一个等价类,则构造T加入新的过程类似于求等价类的过程,由此可以以“树与等价类”中介绍的 mfsettp类型来描述T,使构造T的过程仅需用O(eloge)的时间,由此,克鲁斯卡尔算法的时间复杂度为O(eloge)。

二、克鲁斯卡尔算法介绍

1、克鲁斯卡尔算法是求连通网的最小生成树的另一种方法。与普里姆算法不同,它的时间复杂度为O(eloge)(e为网中的边数),所以,适合于求边稀疏的网的最小生成树。

2、克鲁斯卡尔(Kruskal)算法从另一途径求网的最小生成树。其基本思想是:假设连通网G=(V,E),令最小生成树的初始状态为只有n个顶点而无边的非连通图T=(V,{}),图中每个顶点自成一个连通分量。在E中选择代价最小的边,若该边依附的顶点分别在T中不同的连通分量上,则将此边加入到T中;否则,舍去此边而选择下一条代价最小的边。依此类推,直至T中所有顶点构成一个连通分量为止。

三、克鲁斯卡尔算法的基本思想

先构造一个只含 n个顶点、而边集为空的子图,把子图中各个顶点看成各棵树上的根结点,之后,从网的边集 E中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,即把两棵树合成一棵树,反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直到森林中只有一棵树,也即子图中含有 n-1条边为止。时间复杂度为为O(e^2),使用并查集优化后复杂度为 O(eloge),与网中的边数有关,适用于求边稀疏的网的最小生成树。

关于克鲁斯卡尔算法总结的内容到此结束,希望对大家有所帮助。